Intramolecular combination of vinyl, aryl and carbonyl ligands in ruthenium(II) complexes: a mechanistic study

Martin P. Waugh and Roger J. Mawby*

Department of Chemistry, University of York, York YO1 5DD, UK

Complexes $[Ru(CO)_2(CH=CHR)(C_6H_4X-4)L(L')]$ $[R = Ph, CMe_3, H, Me \text{ or OEt}; X = H, Cl \text{ or OMe}; L = L' = PMe_2Ph, PMe_3, P(OMe)_2Ph \text{ or PPh}_3; L = PMe_3, L' = PPh_3]$ underwent competing isomerisation reactions, one an intramolecular construction of a vinyl aryl ketone which remains co-ordinated, the other a simple redistribution of the ligands around the metal. Product ratios are determined by kinetic rather than thermodynamic factors. For a sequence of complexes with $L = L' = PMe_2Ph$, electron-releasing substituents on the vinyl ligand favour formation of ketone complexes, whereas similar substituents on the phenyl ligand have the reverse effect. Increasing the reaction temperature disfavours ketone complex formation. Mechanisms involving initial migration of either the vinyl or the aryl ligand are discussed on the basis of these results and a complementary study involving trapping of the likely acyl intermediates.

The construction of organic molecules within the co-ordination sphere of a transition metal, particularly in cases where the product remains bound to the metal and available for further reaction, raises interesting possibilities for organic synthesis. In a recent paper¹ we reported that complexes [Ru(CO)₂- $(CH=CHR)(C_{6}H_{4}X-4)L(L')$ **1** (R = Ph or CMe₃, X = H, L = $L' = PMe_2Ph$) underwent two competing rearrangements, shown in Scheme 1. One simply involved a redistribution of the ligands around the metal to give another isomer, 2, of $[Ru(CO)_2(CH=CHR)(C_6H_4X-4)L(L')]$, but the other yielded products believed on the basis of elemental analysis and NMR evidence to be vinyl ketone complexes [Ru(CO)- $\{\eta^4$ -RCH=CHC(C₆H₄X-4)=O}L(L')] **3**, formed by combination of vinyl, aryl and carbonyl ligands. This has since been confirmed by an X-ray study of $[Ru(CO){\eta^4-PhCH=CHC(Ph)=}$ O}(PMe₂Ph)₂]² and the structure of a related iron complex (prepared from a preformed vinyl ketone) has also been reported.3

Since conversion of complex 2 into 3 is (see later) extremely slow even on heating, it is clearly of value to maximise the yield of 3 obtained in the initial rearrangement of 1. In this paper we report on a study of the factors which determine the relative amounts of 2 and 3 formed in individual cases, and the possible mechanisms for conversion of 1 into 2 and 3.

Results and Discussion

The ³¹P NMR and (where recorded) IR spectral data for new complexes are collected in Table 1, ¹H and ¹³C NMR data for selected complexes in Tables 2 and 3 respectively. Unless indicated otherwise, all ³¹P and ¹³C NMR spectra were recorded with full proton decoupling.

Synthesis of complexes [Ru(CO)₂(CH=CHR)(C₆H₄X-4)L(L')], isomer 1

The route to these complexes is outlined in Scheme 2, which also lists and labels the complexes according to the nature of R, X, L and L'.

Of the starting materials $[Ru(CO)_2Cl_2L(L')]$ **4a**-4**d**, 4**a** was prepared by the method of Jenkins *et al.*⁴ as modified by Barnard *et al.*⁵ and 4**b** was obtained in the same way. Complex 4**c** was synthesized by heating $[{Ru(CO)_2Cl_2}_n]$ with $P(OMe)_2Ph$

Scheme 1 Competing rearrangements of complexes 1

in methanol, and **4d** by treating $[{Ru(CO)_2Cl_2(PMe_3)}_2]$, a by-product in the synthesis of **4b**, with PPh₃ in propanone.

Brief treatment with NaBH₄ in ethanol (or, for solubility reasons, a mixture of ethanol and benzene) converted each of the complexes 4a-4d into [Ru(CO)₂Cl(H)L(L')] 5a-5d. The complex [Ru(CO)₂Cl(D)(PMe₂Ph)₂], [²H₁]5a and its PMe₃ analogue [2H1]5b were prepared as described by Bray and Mawby.⁶ Like the previously characterised 5a, complexes 5b and 5c exhibited singlet ³¹P NMR spectra, and the ¹H resonance for the hydride ligand and the ¹³C resonances for the two (inequivalent) carbonyl ligands were all triplets, establishing the stereochemistry. For 5d, which contained two different phosphorus ligands, the ³¹P NMR spectrum showed two doublets with a very large value for $|^2 J(PP)|$ (278.5) Hz, characteristic of mutually trans phosphorus ligands.⁷ Complex 5e, [Ru(CO)₂Cl(H)(PPh₃)₂], was obtained by treating [Ru(CO)Cl(H)(PPh₃)₃] with CO, as described by Geoffroy and Bradley.8

Of the complexes $[Ru(CO)_2(CH=CHR)Cl(L)L']$ 6, Bray and Mawby⁹ have previously characterised **6aa** and **6ab**, the

1aaa $L = L' = PMe_2Ph, R = Ph, X = H$ **1aba** $L = L' = PMe_2Ph, R = CMe_3, X = H$ **1abb** $L = L' = PMe_2Ph, R = CMe_3, X = Cl$ **1abc** $L = L' = PMe_2Ph, R = CMe_3, X = Me$ **1abd** $L = L' = PMe_2Ph, R = CMe_3, X = OMe$ **1aca** $L = L' = PMe_2Ph, R = H, X = H$ **1ada** $L = L' = PMe_2Ph, R = Me, X = H$ **1abba** $L = L' = PMe_3Ph, R = OEt, X = H$ **1bbb** $L = L' = PMe_3, R = CMe_3, X = Cl$ **1bbb** $L = L' = PMe_3, R = CMe_3, X = OMe$ **1cba** $L = L' = P(OMe_3)_R R = CMe_3, X = H$ **1dba** $L = L' = P(OMe_3)_R R = CMe_3, X = H$ **1dba** $L = PMe_3, L' = PPh_3, R = CMe_3, X = H$ **1cba** $L = L' = PMh_3, R = CMe_3, X = H$

 $L^{*} \stackrel{l}{CO}$ 6aa L = L' = PMe₂Ph, R = Ph 6ab L = L' = PMe₂Ph, R = CMe₃ 6ac L = L' = PMe₂Ph, R = H 6ad L = L' = PMe₂Ph, R = Me 6ae L = L' = PMe₂Ph, R = OEt 6bb L = L' = PMe₃, R = CMe₃ 6cb L = L' = P(OMe)₂Ph, R = CMe₃ 6db L = PMe₃, L' = PPh₃, R = CMe₃ 6eb L = L' = PPh₃, R = CMe₃

Scheme 2 Synthetic route to complexes 1: in 1aea and 6ae R is *cis*, not *trans*, to Ru; 1eba is not observed, the product being 2eba

products of reaction of 5a with PhC=CH and Me₃CC=CH respectively. Complexes 6bb, 6cb, 6db and 6eb were formed by heating 5b, 5c, 5d and 5e, respectively, with Me₃CC=CH in C₆D₆. For **6bb** and **6cb** the ligand arrangements were established by the singlet ³¹P resonances and the two triplet ¹³C resonances for the carbonyl ligands. For each complex, doublet of triplets resonances were observed for the vinyl protons, and the values for $|{}^{3}J(HH)|$, 17.6 and 17.4 Hz respectively, confirmed that (as in the case of **6aa** and **6ab**) the vinyl ligand had been formed by cis addition of RuH to the alkyne. The assignments of the α - and β -proton resonances, initially based on the assumption that $|^{3}J(PH)|$ would be larger than $|^{4}J(PH)|$, were confirmed for 6aa, 6ab and 6bb by preparing the vinyl complexes $[{}^{2}H_{1}]6aa$, $[{}^{2}H_{1}]6ab$ and $[{}^{2}H_{1}]6bb$ from $[{}^{2}H_{1}]5a$, $[{}^{2}H_{1}]5b$ and the appropriate alkynes. Complex 6eb has previously been reported by Loumrhari et al.¹⁰

For complex **6db**, also, both vinyl protons exhibited doublet of triplets resonances: the doublet splitting $[|^3J(HH)| = 17.4 \text{ Hz}]$ confirmed that *cis* addition of RuH to the alkyne had occurred, while the fact that triplet splittings were observed indicated that the values of $|^3J(PH)|$ were virtually identical for coupling to PMe₃ and to PPh₃, and that the same was true for $|^4J(PH)|$. Differences were, however, observed for coupling of the α carbon in the vinyl ligand to the two phosphorus ligands, and also for the carbon in one of the two carbonyl ligands.

Complex **6ac** was obtained by treating a C_6D_6 solution of **5a** with ethyne for several hours. The vinyl-proton resonances were assigned on the basis of the coupling constants between them $[trans-]^3 J(HH)| = 19.2$, *cis*- $]^3 J(HH)| = 11.4$, *gem*- $]^2 J(HH)| =$

Table 1 Phosphorus-31 NMR^a and IR data^b for new complexes

Complex	δ	Assignment	²J(PP) /Hz	$\tilde{v}(C\equiv O)/cm^{-1}$
5 b ^c	-6.2 (s)	PMe ₃	_	2040
		_ /		1960
5c ^c	162.7 (s)	P(OMe) ₂ Ph	_	2065
5 d ^d	35 8 (d)	PPh.	278 5	2000
Ju	-2.0 (d)	PMe ₃	278.5	
6ac	-1.0 (s)	PMe ₂ Ph	_	2042
fad	0.5 (a)	DMa Dh		1970
oau	-0.5 (S)	rivie ₂ rii	—	1970
6ae	0.2 (s)	PMe₂Ph	_	2045
	00()			1970
6DD °	-9.0 (s)	PMe ₃	_	2034
6cb	164.8 (s)	P(OMe) ₂ Ph	_	2050
	/ -			1990
1abb ^a	-2.7 (d)	PMe ₂ Ph PMe Ph	27.5	
1abc ^d	-3.0 (d)	PMe ₂ Ph	26.6	
	-9.2 (d)	PMe ₂ Ph	26.6	
1abd ^d	-3.1 (d)	PMe ₂ Ph	26.4	
1 aca d	-9.1 (d)	PMe ₂ Ph PMe Ph	26.4	
Iala	-9.5 (d)	PMe ₂ Ph	26.4	
1ada ^d	-2.2 (d)	PMe ₂ Ph	26.6	
a d	-9.0 (d)	PMe ₂ Ph	26.6	
laea "	-2.2 (d)	PMe ₂ Ph PMo Ph	26.1 26.1	
1bba ^d	-11.4 (d)	PMe ₂	29.0	
	-20.0 (d)	PMe ₃	29.0	
1 bbb ^{<i>d, f</i>}	-11.5 (d)	PMe ₃	29.8	
1 bbd ^{<i>d, f</i>}	-19.1 (d) -10.5 (d)	PMe ₃ PMe	29.8 28.6	
1000	-18.9 (d)	PMe ₃	28.6	
1cba ^d	166.9 (d)	P(OMe) ₂ Ph	36.5	
1 dba ^d	163.9 (d)	P(OMe) ₂ Ph	36.5	
Tuba	-15.4 (d)	PMe ₂	26.0	
2abb ^d	0.9 (s)	PMe ₂ Ph	_	
$2abc^d$	1.6 (s)	PMe ₂ Ph		
Zabd ⁻ 2aca	1.6 (S) 1.8 (S)	PMe ₂ Pn PMe_Ph	_	2015
zaca	1.0 (5)	i ivicgi ii		1955
2ada ^d	2.3 (s)	PMe₂Ph	_	
Zaea	2.8 (s)	PMe ₂ Ph	_	2040
2bba	-9.2 (s)	PMe ₂	_	2005
		3		1940
2bbb ^{<i>d</i>, <i>f</i>}	-9.3 (s)	PMe ₃	—	
2000 ^{a, 1} 2dba ^d	-8.4 (S) 29.7 (d)	PMe ₃ PPh	<u></u> 282 6	
Aubu	-5.1 (d)	PMe ₃	282.6	
2eba ^d	28.2 (s)	PPh ₃		
3abb"	8.0 (d)	PMe ₂ Ph PMe Ph	10.4	
3abc ^d	7.9 (d)	PMe ₂ Ph	10.4	
	1.8 (d)	PMe ₂ Ph	10.1	
3abd ^d	8.0 (d)	PMe ₂ Ph	11.9	
Saca d	1.9 (d) 11 3 (d)	PMe ₂ Ph PMo Ph	11.9 13.2	
Juca	2.1 (d)	PMe ₂ Ph	13.2	
3ada ^d	9.1 (d)	PMe ₂ Ph	9.0	
2bba ^d	1.2 (d)	PMe ₂ Ph PMo	9.0	
JUDA "	-8.5 (d)	PMe ₃	0.9 8.9	
3bbb <i>^{<i>d</i>, <i>f</i>}</i>	-1.2 (d)	PMe ₃	17.9	
	-8.2 (d)	PMe ₃	17.9	
3 bbd ","	0.5 (d) -7.5 (d)	PMe ₃ PMo	8.2 8.2	
3cba ^d	176.2 (d)	P(OMe) _s Ph	15.6	
	165.9 (d)	P(OMe) ₂ Ph	15.6	
3dba ^d	39.9 (d)	PPh ₃	9.0	
	-5.1 (a)	rivie ₃	9.0	

^{*a*} In C_6D_6 solution unless stated otherwise. ^{*b*} In CHCl₃ solution unless stated otherwise. Only bands for the carbonyl ligands are listed. ^{*c*} Infrared spectrum in heptane solution. ^{*d*} Infrared spectrum not recorded. ^{*e*} ³¹P NMR spectrum in CDCl₃ solution. ^{*f*} ³¹P NMR spectrum in C₆D₅CD₃ solution.

	Complex	δ (multiplicity, intensity)	Assignment	Coupling constant/Hz	Assignment
	5b	1.26 (t, 18)	PMe ₃	7.5	$ ^{2}J(PH) + {}^{4}J(PH)$
5c 3.64 (t, 0) P(O.Me),P(h) 13.1 $ J, P(H) + T, T)$ -4.38 (t, 1) RuH 17.0 $T, P(H) + T, T)$ -4.38 (t, 1) RuH 10.1 $T, P(H) + T, T)$ -4.78 (dd, 1) RuH 20.0 $T, P(H) + T, T)$ -6.764 (dd, 1) RuH 20.0 $T, P(H) + T, T)$ 6sc 7.64 (dd, 1) CH-CH ₂ 19.2 $T, P(H) + T, T)$ 6sc 7.64 (dd, 1) CH-CH ₄ 19.2 $T, P(H) + T, T)$ 6sc 7.64 (dd, 1) CH-CH ₄ 19.2 $T, P(H) + T, T)$ 6sc 5.86 (dd, 1) CH-CH ₄ 19.2 $T, P(H) + T, T)$ 1.83 (t, 0) PMA_2H 7.7 $T, P(H) + T, T)$ 1.83 (t, 0) PMA_2H 7.7 $T, P(H) + T, T)$ 1.83 (t, 0) PMA_2H 7.7 $T, P(H) + T, T)$ 1.83 (t, 0) PMA_2H 7.7 $T, P(H) + T, T)$ 1.83 (t, 0) PMA_2H 7.7 $T, P(H) + T, T)$ 1.83 (t, 0) PMA_2H 7.7 $T, P(H) + T, T)$ <		-5.59 (t, 1)	RuH	23.6	$ ^{2}J(PH) $
	5c	3.64 (t, 6)	P(OMe) ₂ Ph	13.1	³ <i>J</i> (PH) + ⁵ <i>J</i> (PH
		3.31 (t, 6)	P(OMe) ₂ Ph	12.0	$ ^{3}J(PH) + {}^{5}J(PH)$
$ \begin{split} \mathbf{\hat{d}} & 1.30 (dd. 9) & PMe_s & 10.1 & [-P,PH] \\ -4.78 (dd. 1) & RuH & 24.0 & [-7,PH] \\ -4.78 (dd. 1) & RuH & 24.0 & [-7,PH] \\ -4.78 (dd. 1) & CH-CH_s & 18.9 & [-7,PH] \\ -4.78 (dd. 1) & CH-CH_s & 19.2 & [-7,PH] \\ -4.78 (dd. 1) & CH-CH_s & 11.4 & [-7,PH] \\ -4.78 (dd. 1) & CH-CH_s & 11.4 & [-7,PH] \\ -4.78 (dd. 1) & CH-CH_s & 11.4 & [-7,PH] \\ -5.78 (dd. 1) & CH-CH_s & 11.4 & [-7,PH] \\ -5.58 (dd. 1) & CH-CH_s & 11.4 & [-7,PH] \\ -5.58 (dd. 1) & CH-CH_s & 11.4 & [-7,PH] \\ -5.67 (dtq. 1) & CH-CH_s & 17.1 & [-7,PH] + [-7,PH] \\ -5.67 (dtq. 1) & CH-CHMe & 17.1 & [-7,PH] + [-7,PH] \\ -5.67 (dtq. 1) & CH-CHMe & 17.1 & [-7,PH] + [-7,PH] \\ -5.67 (dtq. 1) & CH-CHMe & 17.1 & [-7,PH] + [-7,PH] \\ -5.67 (dtq. 1) & CH-CHMe & 17.1 & [-7,PH] + [-7,PH] \\ -5.67 (dtq. 1) & CH-CHMe & 7.7 & [-7,PH] + [-7,PH] \\ -5.67 (dtq. 1) & CH-CHMe & 7.7 & [-7,PH] + [-7,PH] \\ -5.67 (dtq. 1) & CH-CHMe & 6.4 & [-7,PH] + [-7,PH] \\ -5.67 (dtq. 1) & CH-CHMe & 6.4 & [-7,PH] + [-7,PH] \\ -5.69 (dt. 1) & CH-CHMe & 6.4 & [-7,PH] + [-7,PH] \\ -5.69 (dt. 1) & CH-CHMe & 7.7 & [-7,PH] + [-7,PH] \\ -5.49 (dt. 1) & CH-CHMe & 7.7 & [-7,PH] + [-7,PH] \\ -5.49 (dt. 1) & CH-CHMe & 7.7 & [-7,PH] + [-7,PH] \\ -5.49 (dt. 1) & CH-CHMe & 7.7 & [-7,PH] + [-7,PH] \\ -5.49 (dt. 1) & CH-CHMe & 7.7 & [-7,PH] + [-7,PH] \\ -5.49 (dt. 1) & CH-CHMe & 7.7 & [-7,PH] + [-7,PH] \\ -5.49 (dt. 1) & CH-CHMe & 7.7 & [-7,PH] + [-7,PH] \\ -5.49 (dt. 1) & CH-CHMe & 7.7 & [-7,PH] + [-7,PH] \\ -5.49 (dt. 1) & CH-CHMe & 7.7 & [-7,PH] + [-7,PH] \\ -5.49 (dt. 1) & CH-CHMe & 7.7 & [-7,PH] + [-7,PH] \\ -5.40 (dd. 1) & CH-CHMe & 7.7 & [-7,PH] + [-7,PH] \\ -5.41 (dd. 1) & CH-CHMe & 7.7 & [-7,PH] \\ -5.41 (dd. 1) & CH-CHMe & 7.7 & [-7,PH] \\ -5.41 (dd. 1) & CH-CHMe & 7.7 & [-7,PH] \\ -5.41 (dd. 1) & CH-CHMe & 7.7 & [-7,PH] \\ -5.41 (dd. 1) & CH-CHMe & 7.7 & [-7,PH] \\ -5.41 (dd. 1) & CH-CHMe & 7.7 & [-7,PH] \\ -5.41 (dd. 1) & CH-CHMe & 7.7 & [-7,PH] \\ -5.41 (dd. 1) & CH-CHMe & 7.7 & [-7,PH] \\ -5.41 (dd. 1) & CH-CHMe & 7.7 & [-7,PH] \\ -5.41 (dd. 1) & CH-CHMe & 7.7 & [-7,PH] \\ -5.41 (dd. 1) & CH-CHMe & 7.7 & [-7,PH] \\ -$		-4.98 (t, 1)	RuH	17.0	² <i>J</i> (PH)
	5d	1.30 (dd, 9)	PMe ₃	10.1	$ ^{2}J(PH) $
			-	1.9	$ ^4 J(PH) $
$ \begin{aligned} & 2, 2, 3, 3, 3, 3, 3, 3,$		-4.78 (dd, 1)	RuH	24.0	$ ^{2}J(PH) $
$ \begin{aligned} & \text{sec} & 7.64 (\operatorname{ddt}, 1) & CH-CH_2 & 19.2 & 2.1(\operatorname{H}) & 3.4 & 3.(\operatorname{H}) & 3.4 & 3.(\operatorname{H}) & 3.4 & 3.(\operatorname{H}) & 3.4 & 3.(\operatorname{H}) & 3.1 & 3.(\operatorname$				18.9	$^{2}J(PH)$
	6ac	7.64 (ddt. 1)	C <i>H</i> =CH₀	19.2	³ J(HH)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2	11.4	³ J(HH)
				3.4	³ . <i>J</i> (PH)
		6.27 (ddt. 1)	CH=C <i>H</i> ₃	11.4	³ . <i>J</i> (HH)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2	3.1	² . <i>I</i> (HH)
				2.7	⁴ . <i>J</i> (PH)
		5.58 (ddt. 1)	CH=C <i>H</i> ₅	19.2	³ .7(HH)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.00 (uut, 1)		3.1	$ ^{2}$ $I(HH) $
				2.6	$ ^{4}$ <i>I</i> (PH)
		1 63 (t 6)	PMa Ph	2.0	$ ^{2}$ $(DI) $ $ ^{4}$ (DI)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.03(1, 0) 1 55 (+ C)	$\Gamma Me_2 \Gamma \Pi$ D M α Db	7.5	$ J(FII) + J(FII) + \frac{2}{10} I(FII) + \frac{4}{10} I(FII) + \frac{4}{10}$
$ \mathbf{b} \mathbf{a} \mathbf{b} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 3 & 1 & 1 & 1 \\ 3 & 1 & 1 & 1 \\ 3 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1$	fad	1.33(1, 0)	$C H C H M_{2}$	1.1	$ _{3}(\Gamma \Pi) + J(\Gamma \Pi)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	oad	6.93 (ald, 1)	CH=CHIMe	17.1	$ J(\mathbf{HH}) $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				3.4	J(PH)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.05(1) (1)		1.5	'J(HH)
$ \begin{array}{c} \begin{array}{c} & \end{array} \\ & \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ \begin{array}{c} & \begin{array}{c} & \end{array} \\ \end{array}$		5.67 (dtq, 1)	CH=C <i>H</i> Me	17.1	° <i>J</i> (HH)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				6.0	³ <i>J</i> (HH)
				2.6	* <i>J</i> (PH)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.96 (dtd, 3)	CH=CHMe	6.0	<i>³J</i> (HH)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				3.0	<i>°J</i> (PH)
				1.5	<i>⁴J</i> (HH)
		1.59 (t, 6)	P <i>Me</i> ₂Ph	7.7	$ ^{2}J(PH) + {}^{4}J(PH)$
$ \begin{split} & \textbf{6ae} & \textbf{6.86 (dt, 1)} & CH=CHOEt & \textbf{6.4} & \overset{[]}{} J(HH) \\ & & \textbf{5.49 (dt, 1)} & CH=CHOEt & \textbf{6.4} & \overset{[]}{} J(HH) \\ & & \textbf{3.2} & \overset{[]}{} J(HH) \\ & & \textbf{3.50 (t, 2)} & OCH_2CHOEt & \textbf{6.4} & \overset{[]}{} J(HH) \\ & & \textbf{1.69 (t, 6)} & PM_{Q}Ph & \textbf{8.1} & \overset{[]}{} J(PH) + J(T) \\ & & \textbf{1.69 (t, 6)} & PM_{Q}Ph & \textbf{8.1} & \overset{[]}{} J(PH) + J(T) \\ & & \textbf{1.69 (t, 6)} & PM_{Q}Ph & \textbf{7.7} & \overset{[]}{} J(PH) + J(T) \\ & & \textbf{1.69 (t, 6)} & PM_{Q}Ph & \textbf{7.7} & \overset{[]}{} J(PH) + J(T) \\ & & \textbf{1.64 (t, 6)} & PM_{Q}Ph & \textbf{7.7} & \overset{[]}{} J(PH) + J(T) \\ & & \textbf{1.08 (q, 3)} & OCH_2CHCMe_3 & \textbf{7.6} & \overset{[]}{} J(PH) \\ & & \textbf{5.54 (dt, 1)} & CH=CHCMe_3 & \textbf{7.6} & \overset{[]}{} J(PH) \\ & & \textbf{5.54 (dt, 1)} & CH=CHCMe_3 & \textbf{7.7} & \overset{[]}{} J(PH) \\ & & \textbf{5.54 (dt, 1)} & CH=CHCMe_3 & \textbf{7.7} & \overset{[]}{} J(PH) \\ & & \textbf{5.99 (dt, 1)} & CH=CHCMe_3 & \textbf{7.7} & \overset{[]}{} J(PH) \\ & & \textbf{5.28 (dt, 1)} & CH=CHCMe_3 & \textbf{7.7} & \overset{[]}{} J(PH) \\ & & \textbf{5.28 (dt, 1)} & CH=CHCMe_3 & \textbf{7.7} & \overset{[]}{} J(PH) \\ & & \textbf{5.75 (t, 6)} & P(OM_{Q}Ph & \textbf{11.1} & \overset{[]}{} J(PH) \\ & & \textbf{5.75 (t, 6)} & P(OM_{Q}Ph & \textbf{11.1} & \overset{[]}{} J(PH) + \overset{[]}{} J(PH) \\ & & \textbf{5.75 (t, 6)} & P(OM_{Q}Ph & \textbf{11.1} & \overset{[]}{} J(PH) + \overset{[]}{} J(PH) \\ & & \textbf{5.24 (dt, 1)} & CH=CHCMe_3 & \textbf{17.4} & \overset{[]}{} J(HH) \\ & & \textbf{5.24 (dt, 1)} & CH=CHCMe_3 & \textbf{17.4} & \overset{[]}{} J(HH) \\ & & & \textbf{5.24 (dt, 1)} & CH=CHCMe_3 & \textbf{17.4} & \overset{[]}{} J(HH) \\ & & & & \textbf{1.53 (dd, 9)} & PMe_3 & \textbf{10.0} & \overset{[]}{} J(PH) \\ & & & & & & & & & & & & & & & & & & $		1.49 (t, 6)	P <i>Me</i> ₂Ph	7.6	$ ^{2}J(PH) + {}^{4}J(PH)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6ae	6.86 (dt, 1)	CH=CHOEt	6.4	³ <i>J</i> (HH)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				3.1	$ ^4 J(\text{PH}) $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.49 (dt, 1)	CH=CHOEt	6.4	$ ^{3}J(HH) $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				3.2	$ ^{3}J(PH) $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3.50 (t, 2)	OCH ₂ CH ₃	7.0	$ ^{3}J(HH) $
		1.69 (t, 6)	P <i>Me</i> ,Ph	8.1	$ ^{2}J(PH) + {}^{4}J(PH)$
		1.64 (t. 6)	P <i>Me</i> _• Ph	7.7	$^{2}J(PH) + ^{4}J(PH)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.08 (q. 3)	OCH ₃ C <i>H</i> 3	7.0	³ . <i>J</i> (HH)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6bb ^{<i>b</i>}	6.31 (dt. 1)	C <i>H</i> =CHCMe ₂	17.6	³ . <i>J</i> (HH)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.01 (ad, 1)	orr orreines	3.6	$ ^{3}$ <i>I</i> (PH)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5 54 (dt 1)	CH–C <i>H</i> CMe-	17.6	³ (HH)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.01 (ut, 1)	on=ontoining	2.6	$ ^{4}$ <i>I</i> (PH)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1 / 8 († 18)	PMo	2.0	$ ^{2}$ (PH) ± 4 (PH)
66b ^b 5.99 (dt, 1) CH=CHCMe ₃ 17.4 3 J(PH) 5.28 (dt, 1) CH=CHCMe ₃ 17.4 3 J(PH) 3.75 (t, 6) P(OM θ_{2} Ph 11.5 3 J(PH) 3.67 (t, 6) P(OM θ_{2} Ph 11.5 3 J(PH) 3.67 (t, 6) P(OM θ_{2} Ph 11.1 3 J(PH) 0.70 (s, 9) CMe ₃ - - 6db ^b 6.42 (dt, 1) CH=CHCMe ₃ 17.4 3 J(PH) 5.24 (dt, 1) CH=CHCMe ₃ 17.4 3 J(PH) 1.53 (dd, 9) PMe ₃ 10.0 2 J(PH) 1.53 (dd, 9) PMe ₃ 10.0 2 J(PH) 1.53 (dd, 1) CH=CHCMe ₃ 18.3 3 J(PH) 1.66 (ddd, 1) CH=CHCMe ₃ 18.3 3 J(PH) 1.66 (ddd, 1) CH=CHCMe ₃ 17.6 3 J(PH) 1.17 (s, 9) CMe ₃ - - 1.17 (s, 9) CMe ₃ - - 1.17 (s, 9) CMe ₃ - - 1.20 3 J(PH) 3.8 2 J(PH) 1.2		0.08 (c, 0)	CMo	1.5	5(11) + 5(11)
dtu 3.59 (dt, 1) C/FE/HCMe3 1.4 $3/(111)$ 5.28 (dt, 1) CH=CHCMe3 17.4 $3/(111)$ 3.75 (t, 6) P(OM0)_2Ph 11.5 $3/(111)$ 3.67 (t, 6) P(OM0)_2Ph 11.1 $3/(111)$ 0.70 (s, 9) CMe3 $ 0.70$ (s, 9) CMe3 $ 0.70$ (s, 9) CMe3 17.4 $3/(111)$ 5.24 (dt, 1) CH=CHCMe3 17.4 $3/(111)$ 5.24 (dt, 1) CH=CHCMe3 17.4 $3/(111)$ 1.53 (dd, 9) PMe3 10.0 $2/(2171)$ 1.53 (dd, 9) PMe3 10.0 $2/(2171)$ 1.53 (dd, 1) CH=CHCMe3 18.3 $3/(111)$ 1.53 (dd, 1) CH=CHCMe3 18.3 $3/(111)$ 1.6 5.2 $3/(111)$ 1.76 $3/(111)$ 1.20 $3/(111)$ 1.20 $3/(111)$ 1.20 $3/(111)$ 1.20 $3/(111)$ 1.20 $3/(111)$ 1.20 $3/(111)$ 1.20	Boh ^b	5.90 (dt 1)	$CHCHCM_{0}$	17 4	³ //UU)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	JCD	5.99 (ut, 1)	CH=CHCIVIE ₃	17.4	$ J(\Pi\Pi) $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5 00 (lt 1)	CU CUCM.	4.1	J(PH)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.28 (dt, 1)	$CH=CHCMe_3$	17.4	J(HH)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				2.0	'J(PH)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3.75 (t, 6)	P(OMe) ₂ Ph	11.5	$ ^{\circ}J(PH) + ^{\circ}J(PH)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3.67 (t, 6)	P(OMe) ₂ Ph	11.1	<i>°J</i> (PH) + <i>°J</i> (PH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.70 (s, 9)	CMe ₃		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 db ^ø	6.42 (dt, 1)	CH=CHCMe ₃	17.4	³ <i>J</i> (HH)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				3.6	³ <i>J</i> (PH)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.24 (dt, 1)	CH=CHCMe3	17.4	³ <i>J</i> (HH)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				2.4	$ ^4 J(\text{PH}) $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.53 (dd, 9)	PMe ₃	10.0	$ ^{2}J(PH) $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5	1.9	⁴ J(PH)
1abb 6.56 (ddd, 1) $CH=CHCMe_3$ 18.3 $ ^3J(PH) $ 5.84 (dd, 1) $CH=CHCMe_3$ 17.6 $ ^3J(HH) $ 5.84 (dd, 1) $CH=CHCMe_3$ 17.6 $ ^3J(HH) $ 1.17 (s, 9) CMe_3 $ -$ 1.17 (s, 9) $CH=CH_2$ 19.3 $ ^3J(HH) $ 1.17 (s, 9) $CH=CH_2$ 19.3 $ ^3J(HH) $ 1.2.0 $ ^3J(HH) $ 1.4 $ ^3J(PH) $ 6.65 (dddd, 1) $CH=CH_2$ 12.0 $ ^3J(HH) $ 2.9 $ ^4J(PH) $ 2.9 $ ^4J(PH) $ 5.87 (ddd, 1) $CH=CH_2$ 19.3 $ ^3J(HH) $ 2.6 $ ^4J(PH) $ $2.7(HH) $ 2.6 1.40 (d, 0) 2.16 $ ^4J(PH) $ 2.16		0.76(s, 9)	CMe	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 abb	6 56 (ddd 1)	CH=CHCMe	18.3	³ /(PH)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tubb	0.00 (uuu, 1)	on=ontoineg	17.6	³ (HH)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				5.2	³ <i>I</i> (PH)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5 84 (dd 1)	CH_C <i>H</i> CM	17.6	³ /(11)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.84 (uu, 1)	CIT=CITCIVIE ₃	17.0	J(IIII)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.17(0)	CMa	2.5	J(P II)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.17 (S, 9) 7 50 (2333 1)		<u> </u>	3 7(T TT T)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	laca	7.58 (dddd, 1)	$CH = CH_2$	19.3	<i>°J</i> (HH)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				18.2	° <i>J</i> (PH)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				12.0	° <i>J</i> (HH)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				4.4	<i>³J</i> (PH)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6.65 (dddd, 1)	CH=CH ₂	12.0	$ ^{3}J(\text{HH}) $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				3.8	$ ^{2}J(\text{HH}) $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				2.9	⁴ <i>J</i> (PH)
5.87 (ddd, 1) $CH=CH_2$ 19.3 $ ^3J(HH) $ 3.8 $ ^2J(HH) $ 2.6 $ ^4J(PH) $				1.4	⁴ J(PH)
$\begin{array}{c} 1 & 0 & (1 & 0) \\ 1 & 0 & (1 & 0) \\ \end{array}$		5.87 (ddd. 1)	CH=CH.	19.3	³ J(HH)
$\frac{2.6}{2.6} \qquad \frac{ ^4 J(PH) }{2.6}$				3.8	² ./(HH)
				2.6	⁴ . <i>J</i> (PH)
$P_{1/2}$		1 30 (d. 3)	PMa Ph	6.4	$ ^{2}$ $I(PH) $

Table 2 Proton NMR data^a for new complexes

Complex	δ (multiplicity, intensity)	Assignment	Coupling constant/Hz	Assignment
	1 14 (d. 3)	PMa Ph	79	$ ^{2}$ $I(\mathbf{DH}) $
	1.14(0, 5) 1.00 (d. 2)	D Ma Dh	7.0	$ ^{2} I(DL) $
	1.00(0, 3)	$\Gamma I V I C_2 \Gamma I I$	7.0	$ J(\Gamma I I) $
	0.95(0,3)	PMe ₂ Ph	7.6	$ ^{3}J(PH) $
laea	7.02 (dd, 1)	CH=CHOEt	6.9	³ <i>J</i> (HH)
			3.4	* <i>J</i> (PH)
	5.36 (ddd, 1)	C <i>H</i> =CHOEt	17.9	$ ^{3}J(PH) $
			6.9	³ <i>J</i> (HH)
			2.2	$ ^{3}J(\text{PH}) $
	3.63 (c, 2) ^c	OCH ₂ CH ₃	_	_
	1.50 (d. 3)	P <i>Me</i> _• Ph	7.7	$ ^2 J(\text{PH}) $
	1.19 (d. 3)	P <i>Me</i> ĴPh	8.2	² . <i>J</i> (PH)
	1 11 (t 3)	OCH CH	7.0	³ (HH)
	1.06 (d 3)	PMo Ph	8.2	$ ^{2}$ <i>I</i> (PH)
	0.07 (d. 3)	D Ma Dh	9.5	$ ^{2} I(DL) $
1kha	0.57 (0, 3)	$\Gamma M e_2 \Gamma \Pi$	0.J 10.7	$ J(\Gamma I I) $
IDDa	6.50 (ddd, 1)	$CH=CHCMe_3$	18.7	J(PH)
			17.6	² J(HH)
			4.4	³ <i>J</i> (PH)
	5.88 (dd, 1)	CH=CHCMe ₃	17.6	<i>°J</i> (HH)
			2.6	4 <i>J</i> (PH)
	1.20 (s, 9)	CMe ₃	_	_
	0.97 (d, 9)	PMe ₃	7.4	$ ^{2}J(PH) $
	0.74 (d. 9)	PMe ₂	8.2	$^{2}J(PH)$
1 bbb ^{<i>d</i>}	6.40 (ddd, 1)	C <i>H</i> =CHCMe ₂	19.1	³ ./(PH)
			17.6	³ (HH)
			13	$ ^{3}$ <i>I</i> (PH)
	5 81 (dd 1)	CH_CHCM0	17.6	³ ((111)
	5.81 (du, 1)	CITECHCINE ₃	9.6	4 I(DLI)
	1 15 (2.0)	CMa	2.0	J(I II)
	1.15(s, 9)	CMe ₃		
	0.97 (d, 9)	PMe ₃	7.6	<i>*J</i> (PH)
	0.72 (d, 9)	PMe ₃	8.6	<i>*J</i> (PH)
1 bbd ^{<i>a</i>}	6.51 (ddd, 1)	C <i>H</i> =CHCMe ₃	19.1	$ ^{3}J(PH) $
			17.6	³ <i>J</i> (HH)
			3.8	³ J(PH)
	5.91 (dd, 1)	CH=CHCMe3	17.6	$ ^{3}J(HH) $
		5	2.4	⁴ J(PH)
	1.24 (s. 9)	CMe	_	_
	0.96 (d. 9)	PMe	7.6	$ ^{2}$ $J(PH) $
	0.74 (d, 9)	PMo	81	$ ^{2}$ <i>I</i> (PH)
1 cho	5.07 (ddd 1)	$C H C H C M_{0}$	17 4	$ ^{3}I(DLI) $
ICDA	5.97 (ddd, 1)	CH=CHCMe ₃	17.4	$ J(\Gamma\Pi) $
			17.4	$ J(\Pi\Pi) $
			7.5	$ ^{3}J(PH) $
	5.77 (dd, 1)	CH=CHCMe ₃	17.4	³ <i>J</i> (HH)
			1.6	* <i>J</i> (PH)
	3.32 (d, 3)	P(OMe) ₂ Ph	11.2	$ ^{3}J(PH) $
	3.28 (d, 3)	P(OMe) ₂ Ph	11.2	$ ^{3}J(PH) $
	3.04 (d, 3)	P(OMe) ₂ Ph	11.6	³ <i>J</i> (PH)
	2.95 (d, 3)	P(OMe),Ph	10.8	³ J(PH)
	0.95 (s, 9)	CMe ₃	_	_
1 dba ^e	5.45 (dd. 1)	CH=C <i>H</i> CMe ₃	17.8	³ . <i>J</i> (HH)
	, .,		2.0	$ ^{4}$ <i>I</i> (PH)
	1 16 (s. 9)	CMea		
	0.73 (d. 9)	PMo	83	² /(PH)
9abb	0.73 (u, 3)	CHCHCM	0.J 17 4	
Lavv	0.40 (ul, 1)	UI ECHUMIe3	11.4	
	5 00 (J: 1)		4.0	$ J(\mathbf{PH}) $
	5.82 (at, 1)	CH=CHCMe ₃	1/.4	<i>J</i> (HH)
			2.0	* <i>J</i> (PH)
	1.25 (t, 6)	P <i>Me</i> ₂Ph	7.2	$ ^{z}J(PH) + {}^{4}J(PH) $
	1.18 (s, 9)	CMe ₃	_	_
	1.06 (t, 6)	P <i>Me</i> ₂Ph	7.2	$ ^{2}J(PH) + {}^{4}J(PH) $
2abc	6.61 (dt, 1)	CH=CHCMe ₃	17.7	³ <i>J</i> (HH)
		- 3	4.6	$ ^{3}J(PH) $
	5.85 (dt. 1)	CH=C <i>H</i> CMe.	17.7	3./(HH)
	(, -)		2.0	⁴ . <i>I</i> (PH)
	2 10 (s 3)	C.H.Me		
	133(t 6)	DMa Dh	7 /	$ ^{2} / (DH) + 4 / (DH) $
	1.00(1,0) 1.99(c,0)		r.1	$ J(\Gamma \Pi) + J(\Gamma \Pi) $
	1.44 (5, 9)	DIVIE ₃	~ ~	
0.1.1	1.17(0, 6)	PINIe ₂ Ph	/.4	J(PH) + J(PH)
Zabd	6.57 (dt, 1)	C <i>H</i> =CHCMe ₃	17.4	<i>°J</i> (HH)
			2.9	* <i>J</i> (PH)
	5.85 (dt, 1)	CH=CHCMe3	17.4	³ <i>J</i> (HH)
			2.1	$ ^{4}J(PH) $
	1.37 (t, 6)	P <i>Me</i> ₂Ph	7.3	$ ^{2}J(PH) + {}^{4}J(PH) $
	1.20 (s, 9)	CMe ₃	_	<u> </u>
	1.16 (t, 6)	PMe,Ph	7.2	$ ^{2}J(PH) + {}^{4}.J(PH) $
2aca	7.42 (ddt. 1)	CH=CH.	19.2	³ ./(HH)
			11.9	³ /(HH)
			4.6	³ (PH)
			J.U	5(11)

Table 2 (continued)

Table 2 (continued)

Complex	δ (multiplicity, intensity)	Assignment	Coupling constant/Hz	Assignment
	6.53 (ddt. 1)	CH=C <i>H</i> ₃	11.9	³ ./(HH)
		- L	3.8	² J(HH)
			2.4	⁴ . <i>I</i> (PH)
	5 80 (ddt 1)	СН–С <i>Н</i> -	19.2	$ ^{3}$ <i>(</i> (HH))
	5.66 (dut, 1)	011-0112	3.8	$ ^{2}I(HH) $
			2.0	$ ^{4} I(PH) $
	1 22 († 6)	DMa Dh	2.0	$ ^{2}$ $(I I I) $ $ ^{2}$ $(I D I) $ $ ^{4}$ $(I D I) $
	1.32(1, 0)	$P_{1}VIe_{2}P_{1}$	7.0	$ J(\Gamma\Pi) + J(\Gamma\Pi) $
0	1.11(l, 0)		7.3	J(PH) + J(PH)
zaea	6.92 (dt, 1)	CH=CHOEt	6.9	⁻ J(HH)
	m am (1, a)		2.8	J(PH)
	5.15 (dt, 1)	C <i>H</i> =CHOEt	6.9	° <i>J</i> (HH)
		0.011.011	5.4	° <i>J</i> (PH)
	3.60 (q, 2)	OCH_2CH_3	7.0	[°] <i>J</i> (HH)
	1.47 (t, 6)	PMe₂Ph	7.1	$ ^{2}J(PH) + ^{3}J(PH) $
	1.17 (t, 6)	P <i>Me</i> ₂Ph	7.1	$ ^{z}J(PH) + {}^{4}J(PH) $
	1.12 (t, 3)	OCH_2CH_3	7.0	$ ^{3}J(HH) $
2bba	6.53 (dt, 1)	C <i>H</i> =CHCMe ₃	17.6	$ ^{3}J(HH) $
			4.8	³ <i>J</i> (PH)
	5.92 (dt, 1)	CH=C <i>H</i> CMe ₃	17.6	³ <i>J</i> (HH)
			2.2	$ ^4 J(\text{PH}) $
	1.17 (s, 9)	CMe ₃	_	_
	0.93 (t, 18)	PMe ₃	7.1	$ ^{2}J(PH) + {}^{4}J(PH) $
2bbb ^{<i>d</i>}	6.54 (dt, 1)	CH=CHCMe ₃	17.6	³ J(HH)
		Ŭ	3.6	$ ^{3}J(PH) $
	5.66 (dt. 1)	CH=C <i>H</i> CMe ₂	17.6	³ J(HH)
		5	2.6	⁴ . <i>J</i> (PH)
	1.15 (t. 18)	PMe	7.6	$ ^{2}$ $J(PH) + {}^{4}$ $J(PH)$
	1.08 (s. 9)	CMe		
2dha	6.35 (ddd 1)	CH-CHCMe-	17.6	³ /(HH)
Subu	0.00 (uuu, 1)	enemeines	73	$ ^{3}I(PH) $
			9.1	$ ^{3}I(PH) $
	5 97 (dt 1)	CH_CHCM0	17.6	³ /(11)
	5.57 (ut, 1)	CITECTICIVIE3	19	J(I II I)
	1.12 (c. 0)	CMa	1.0	3(111)
	1.12(3, 5)	DM ₀	 0.2	
9aha	0.97 (0, 9)	$CHCHCM_{2}$	9.2	$ J(\Gamma\Pi) $
zeba	0.21 (dl, 1)	$CH = CHCMe_3$	17.9	$ J(\Pi\Pi) $
	5 07 (l+ 1)	CIL CHCM.	4.0	J(PH)
	5.97 (dt, 1)	$CH=CHCMe_3$	17.9	J(HH)
	1.00 (2.0	* <i>J</i> (PH)
	1.03 (s, 9)	CMe ₃		3 7/1 11 1)
3abb	5.63 (ddd, 1)	Me ₃ CCH=CHCOC ₆ H ₄ CI	8.1	° <i>J</i> (HH)
			3.1	³ J(PH)
	/		1.1	³ <i>J</i> (PH)
	2.01 (ddd, 1)	Me ₃ CC <i>H</i> =CHCOC ₆ H ₄ Cl	8.1	³ <i>J</i> (HH)
			7.8	³ J(PH)
			6.0	^s J(PH)
	1.71 (d, 3)	P <i>Me</i> ₂Ph	8.5	$ ^{z}J(PH) $
	1.59 (d, 3)	P <i>Me</i> ₂Ph	8.1	<i>^zJ</i> (PH)
	1.19 (s, 9)	CMe ₃	—	
	0.96 (d, 3)	P <i>Me</i> ₂Ph	7.4	$ ^{2}J(PH) $
	0.87 (d, 3)	PMe2Ph	7.6	$ ^{2}J(\text{PH}) $
3abc ^e	5.77 (ddd, 1)	Me ₃ CCH=C <i>H</i> COC ₆ H ₄ Me	8.2	³ <i>J</i> (HH)
			2.0	$ ^{3}J(\text{PH}) $
			1.0	³ J(PH)
	2.05 (s, 3)	C_6H_4Me	_	
	1.73 (d, 3)	P <i>Me</i> ₂Ph	8.7	$ ^{2}J(PH) $
	1.62 (d, 3)	P <i>Me</i> ₂ Ph	8.2	$ ^{2}J(\text{PH}) $
	1.20 (s, 9)	CMe ₃	_	
	1.03 (d, 3)	PMe ₂ Ph	6.4	$ ^{2}J(\text{PH}) $
	1.01 (d, 3)	PMe2Ph	7.6	$ ^{2}J(\text{PH}) $
3abd	5.67 (ddd, 1)	Me₃CCH=C <i>H</i> COC₅H₄OM	1e 7.9	$ ^{3}J(HH) $
			2.3	$ ^{3}J(\text{PH}) $
			1.3	³ J(PH)
	2.08 (ddd, 1)	Me ₂ CC <i>H</i> =CHCOC _e H ₄ OM	1e 7.9	³ J(HH)
			8.1	³ . <i>J</i> (PH)
			6.1	³ <i>J</i> (PH)
	1.74 (d. 3)	P <i>Me</i> ₀Ph	8.2	$^{2}J(PH)$
	1.65 (d. 3)	PMe.Ph	8.2	$^{2}J(PH)$
	1.21 (s. 9)	CMe ₂		
	1.02 (d. 3)	P <i>Me</i> ₂ Ph	7.6	$ ^{2}$ <i>I</i> (PH)
	0.97 (d. 3)	PMe Ph	7.4	² <i>J</i> (PH)
3aca ^e	5.77 (m 1)	CH_=CHCOPh	_	
vutt	1 99 (m 1)	CH = CHCOPh	_	_
	1 59 (d 3)	PMaPh	8.8	² /(PH)
	1 <i>AA</i> (d. 3)	$\mathbf{P}M_{\mathbf{A}}\mathbf{P}\mathbf{h}$	65	$ ^{2} I(PH) $
	1.44 (u, 3) 0.08 (d. 3)	$\mathbf{D}M_{0}$ Dh	0.5 7 7	$ ^{2} I(DH) $
	0.30 (u, 3) 0.86 (d. 2)	$r_1 v_1 e_2 r_{11}$	1.1 7 7	$ J(\Gamma\Pi) $
	0.80 (a, 3)	r1v1e2r11	1.1	<i>J</i> (PH)

Table 2 (continued)

Complex	δ (multiplicity, intensity)	Assignment	Coupling constant/Hz	Assignment
3bba	5.79 (ddd, 1)	Me ₃ CCH=CHCOPh	7.9	³ <i>J</i> (HH)
		5	3.0	³ J(PH)
			1.1	³ <i>J</i> (PH)
	1.90 (ddd, 1)	Me₄CC <i>H</i> =CHCOPh	7.9	³ J(HH)
		Ū.	7.7	$ ^{3}J(PH) $
			6.2	$ ^{3}J(PH) $
	1.40 (d, 9)	PMe ₃	8.8	$ ^{2}J(PH) $
	1.28 (s, 9)	CMe ₃	_	
	0.78 (d, 9)	PMe ₃	7.7	$ ^{2}J(PH) $
3cba	5.80 (ddd, 1)	Me₃ČCH=C <i>H</i> COPh	8.5	$ ^{3}J(HH) $
		Ū.	3.3	$ ^{3}J(PH) $
			1.0	$ ^{3}J(PH) $
	3.58 (d, 3)	P(OMe),Ph	11.7	$ ^{3}J(PH) $
	3.50 (d, 3)	P(OMe) ₂ Ph	12.0	$ ^{3}J(PH) $
	3.46 (d, 3)	P(OMe) ₂ Ph	11.6	$ ^{3}J(PH) $
	3.01 (d, 3)	P(OMe) ₂ Ph	11.6	$ ^{3}J(PH) $
	2.32 (ddd, 1)	Me ₃ CC <i>H</i> =CHCOPh	8.9	$ ^{3}J(PH) $
		Ū.	8.5	$ ^{3}J(HH) $
			6.1	$ ^{3}J(PH) $
	1.20 (s, 9)	CMe ₃	_	_
3dba	5.96 (ddd, 1)	Me ₃ ČCH=C <i>H</i> COPh	7.7	³ <i>J</i> (HH)
		Ū.	2.7	$ ^{3}J(PH) $
			1.2	$ ^{3}J(PH) $
	2.28 (ddd, 1)	Me ₃ CC <i>H</i> =CHCOPh	7.7	$ ^{3}J(HH) $
		Ū.	7.2	$ ^{3}J(PH) $
			6.2	³ <i>J</i> (PH)
	1.38 (s, 9)	CMe ₃	_	
	1.33 (d, 9)	PMe ₃	8.9	$ ^{2}J(PH) $

^{*a*} In C_6D_6 solution unless indicated otherwise. Resonances due to phenyl protons omitted. ^{*b*} In CDCl₃ solution. ^{*c*} Two overlapping distorted doublets of quartets. ^{*d*} In $C_6D_5CD_3$ solution. ^{*e*} One vinyl-proton resonance obscured.

 Table 3
 Carbon-13 NMR data^a for new complexes

Complex	δ	Assignment	Coupling constant/Hz	Assignment
5b	200.4 (t)	CO	12.3	$ ^{2}J(PC) $
	195.2 (t)	CO	8.3	$^{2}J(PC)$
	19.5 (t)	PMe ₃	32.7	$ ^{1}J(PC) + {}^{3}J(PC) $
5c	196.2 (t)	CO	14.0	$ ^{2}J(PC) $
	193.3 (t)	CO	8.7	$^{2}J(PC)$
	54.2 (t)	P(OMe) ₂ Ph	2.6	$ ^{2}J(PC) + {}^{4}J(PC) $
	53.1 (t)	P(OMe) ₂ Ph	5.8	$ ^{2}J(PC) + {}^{4}J(PC) $
6ac	199.0 (t)	CO	12.0	$ ^{2}J(PC) $
	194.0 (t)	CO	7.9	$ ^{2}J(PC) $
	166.3 (t)	CH=CH ₂	15.0	$ ^{2}J(PC) $
	124.4 (t)	$CH = CH_2$	4.8	$ ^{3}J(PC) $
	13.5 (t)	PMe_2Ph	34.8	$ ^{1}J(PC) + {}^{3}J(PC) $
	11.9 (t)	PMe_2Ph	34.1	$ ^{1}J(PC) + {}^{3}J(PC) $
6ad	199.3 (t)	CO	12.0	$ ^{2}J(PC) $
	194.0 (t)	CO	8.2	$ ^{2}J(PC) $
	154.0 (t)	<i>C</i> H=CHMe	15.6	$ ^{2}J(PC) $
	132.6 (t)	CH= <i>C</i> HMe	5.0	$ ^{3}J(PC) $
	24.6 (t)	CH=CHMe	1.8	$ ^4 J(PC) $
	13.7 (t)	PMe_2Ph	32.9	$ ^{1}J(PC) + {}^{3}J(PC) $
	12.0 (t)	PMe_2Ph	34.5	$ ^{1}J(PC) + {}^{3}J(PC) $
6ae	198.7 (t)	CO	12.4	$ ^{2}J(PC) $
	194.3 (t)	CO	8.4	$ ^{2}J(PC) $
	149.6 (t)	CH=CHOEt	5.1	$ ^{3}J(\text{PC}) $
	123.6 (t)	CH=CHOEt	15.6	$^{2}J(PC)$
	65.8 (s)	OCH ₂ CH ₃	—	<u> </u>
	15.6 (s)	OCH ₂ CH ₃	—	—
	13.7 (t)	PMe ₂ Ph	33.4	$ ^{1}J(PC) + {}^{3}J(PC) $
	13.5 (t)	PMe ₂ Ph	34.2	$ ^{1}J(PC) + {}^{3}J(PC) $
6bb ^{<i>b</i>}	199.2 (t)	CO	12.9	$ ^{2}J(\text{PC}) $
	194.4 (t)	CO	7.9	$ ^{2}J(\text{PC}) $
	149.3 (t)	CH=CHCMe ₃	5.0	$ ^{3}J(\text{PC}) $
	143.5 (t)	CH=CHCMe ₃	15.0	$ ^{2}J(\text{PC}) $
	36.2 (t)	CMe_3	1.4	⁴ <i>J</i> (PC)
	30.0 (t)	CMe_3	1.5	⁵ <i>J</i> (PC)
	15.3 (t)	PMe ₃	32.9	$ ^{1}J(PC) + {}^{3}J(PC) $
6cb ^{<i>b</i>}	195.3 (t)	CO	15.3	$ ^{2}J(PC) $
	190.1 (t)	CO	10.5	$ ^{2}J(PC) $
	149.3 (t)	CH=CHCMe ₃	5.3	$ ^{3}J(\text{PC}) $
	133.6 (t)	CH=CHCMe ₃	16.3	$ ^{2}J(\text{PC}) $
	53.1 (t)	P(OMe) ₂ Ph	6.3	$ ^{2}J(PC) + {}^{4}J(PC) $

Table 3 (continued)

Complex	δ	Assignment	Coupling constant/Hz	Assignment
	52.8 (t)	P(OMe) ₂ Ph	6.3	$ ^2 J(\text{PC}) + {}^4 J(\text{PC}) $
	35.3 (t)	CMe_3	1.8	$ ^{4}J(PC) $
	28.4 (t)	CMe_3	1.0	$ ^{3}J(PC) $
6db "	198.3 (dd)	0	14.5	$ ^{2}J(PC) $
	193 4 (t)	CO	80	$ ^{2}I(PC) $
	149.0 (t)	CH= <i>C</i> HCMe ₂	5.1	$ ^{3}J(PC) $
	142.7 (dd)	CH=CHCMe ₃	15.8	$ ^{2}J(PC) $
	. ,	u u u u u u u u u u u u u u u u u u u	13.6	$ ^{2}J(PC) $
	36.4 (t)	CMe_3	1.4	⁴ J(PC)
	29.5 (t)	CMe_3	1.5	^s J(PC)
	15.2 (dd)	PMe ₃	33.9	$ ^{1}J(PC) $
1abb	201 0 (dd)	CO	1.7	$ ^{2}J(PC) $
1400	201.0 (uu)	60	85	$ ^{2} I(PC) $
	199.6 (dd)	СО	13.6	$ ^2 J(PC) $
			7.4	$^{2}J(PC)$
	152.7 (dd)	C_6H_4Cl, C^1	62.5	$ ^{2}J(\text{PC}) $
			15.8	$ ^{2}J(\text{PC}) $
	151.3 (dd)	$CH = CHCMe_3$	5.7	$ ^{3}J(PC) $
	141.5 (dd)		4.0	$ ^{2}J(PC) $
	141.3 (uu)	CIT=CITCIVIE ₃	10.4	$ ^{2}I(PC) $
	36.6 (d)	CMe ₂	1.5	$ ^4 J(PC) $
	30.2 (d)	CMe_3	1.7	$ ^{5}J(PC) $
	16.9 (dd)	PMe ₂ Ph	27.1	$^{1}J(PC)$
			1.1	³ <i>J</i> (PC)
	15.9 (dd)	PMe ₂ Ph	33.9	$ ^{1}J(\text{PC}) $
	14.0 (1)		2.8	$ ^{s}J(PC) $
	14.8 (d) 11.1 (dd)	P <i>Me</i> ₂ Ph P <i>Me</i> Ph	25.5	$ ^{1}J(PC) $
	11.1 (uu)	r <i>1v1e</i> ₂ r 11	29.9	$ ^{3}I(PC) $
1aca ^c	162.8 (dd)	<i>C</i> H=CH ₂	16.4	$ ^2 J(PC) $
		<u>ند</u>	13.1	$^{2}J(PC)$
	153.6 (dd)	RuPh, C ¹	58.9	$ ^2 J(PC) $
			15.3	$ ^{2}J(\text{PC}) $
	126.4 (dd)	$CH = CH_2$	5.4	$ ^{3}J(PC) $
	18 2 (dd)	PMe Ph	4.4	J(PC)
	10.2 (dd)	1 1/1021 11	1.6	$ ^{3}J(PC) $
	17.0 (dd)	PMe ₂ Ph	26.7	$ ^{1}J(PC) $
		-	1.6	$ ^{3}J(PC) $
	14.7 (d)	P <i>Me</i> ₂Ph	24.5	$ ^{1}J(PC) $
	10.9 (dd)	P <i>Me</i> ₂Ph	29.4	$ ^{1}J(PC) $
1000	201 7 (dd)	CO	1.0	$ ^{2}J(PC) $
Idea	201.7 (uu)	0	90	$ ^{2}I(PC) $
	200.5 (dd)	CO	13.0	$ ^2 J(PC) $
			9.9	$^{2}J(PC)$
	154.2 (dd)	RuPh, C ¹	63.3	$ ^{2}J(\text{PC}) $
			15.8	$ ^{2}J(\text{PC}) $
	149.1 (dd)	CH=CHOEt	5.7	$ ^{3}J(PC) $
	121 0 (+)		4.0 15.0	$ ^{2}J(PC) $
	65.8 (s)	OCH_CH_	13.0 	<u> 5(t C) </u>
	19.9 (dd)	PMe ₂ Ph	25.4	$ ^{1}J(PC) $
		L.	1.7	$^{3}J(PC)$
	15.5 (s)	OCH_2CH_3	—	
	15.0 (d)	PMe ₂ Ph	23.2	$ ^{1}J(\text{PC}) $
	14.1 (dd)	PMe ₂ Ph	31.1	$ ^{1}J(PC) $
	13 2 (dd)	DMa Dh	2.3	$ ^{2}J(PC) $
	13.2 (uu)	1 1/1/221 11	3 4	$ ^{3}I(PC) $
1bba	201.7 (dd)	СО	98.9	$ ^{2}J(PC) $
			8.5	$^{2}J(PC)$
	199.6 (dd)	CO	13.6	$ ^{2}J(\text{PC}) $
	4		7.6	$ ^{z}J(PC) $
	155.5 (dd)	RuPh, C [*]	62.7 15.9	$ ^{2}J(PC) $
	150 Q (dd)	CU CUCMA	15.8	$ ^{3}J(PC) $
	100.0 (uu)		4.0	$ ^{3}$ /(PC)
	140.7 (dd)	CH=CHCMe,	16.4	$ ^2 J(PC) $
	x/	3	13.2	$^{2}J(PC)$
	36.4 (s)	CMe_3		
	30.4 (d)	CMe_3	2.2	°J(PC)
	18.9 (dd)	PMe ₃	34.9	J(PC)
			1.1	[J(PC)]

Table 3 (continued)

Complex	δ	Assignment	Coupling constant/Hz	Assignment
	15.7 (dd)	PMe_3	28.5	$ ^{1}J(\text{PC}) $
1 bbb ^{<i>d</i>}	201 2 (dd)	CO	3.0 98.8	$ ^{3}J(PC) $
1000	201.2 (du)	60	8.7	$ ^{2}J(PC) $
	199.1 (dd)	CO	13.8	$ ^{2}J(\text{PC}) $
	152 7 (dd)	$C H C C^1$	7.3	$ ^{2}J(PC) $
	155.7 (uu)		16.0	$ ^{2}J(PC) $
	151.1 (dd)	CH=CHCMe ₃	6.2	$^{3}J(PC)$
	140 4 (dd)	CH CHCMa	4.0	$ ^{3}J(PC) $
	140.4 (uu)	CH=CHCMe ₃	13.1	$ ^{2}J(PC) $
	36.4 (d)	CMe_3	1.5	$ ^{4}J(PC) $
	30.3 (d)	CMe_3	1.4	$ ^{5}J(PC) $
	18.7 (dd)	PIMe ₃	25.4	$ ^{3} J(PC) $
	15.6 (dd)	PMe ₃	29.1	$ ^{1}J(PC) $
			2.9	$ ^{3}J(\text{PC}) $
2aca	199.7 (t) 199.0 (t)	C0 C0	9.0	$ ^{2}J(PC) $
	166.7 (t)	CH=CH₂	9.5 15.7	$ ^{2}J(PC) $
	160.3 (t)	RuPh, C ¹	15.4	$ ^{2}J(\text{PC}) $
	126.6 (t)	$CH = CH_2$	4.4	$ ^{3}J(PC) $
	14.3 (t) 14.0 (t)	PMe_2Ph PMe Ph	33.4 32.8	$ ^{1}J(PC) + {}^{3}J(PC) $
2aea	199.2 (t)	CO	8.3	$ ^{2}J(PC) $
	199.1 (t)	CO	9.9	$ ^{2}J(\text{PC}) $
	161.1 (t)	RuPh, C ¹	15.0	$ ^{2}J(PC) $
	123.6 (t)	<i>C</i> H=CHOEt	15.0	$ ^{2}J(PC) $
	65.8 (s)	OCH ₂ CH ₃	_	_
	15.6 (s)	OCH_2CH_3		
	15.4 (t) 14 4 (t)	P <i>Me</i> ₂ Pn P <i>Me</i> ₂ Ph	31.0 32.8	$ ^{1}J(PC) + {}^{3}J(PC) $
2bba	200.4 (t)	CO	9.6	$ ^{2}J(PC) $
	199.1 (t)	CO	9.6	$ ^{2}J(\text{PC}) $
	161.2 (t) 151.2 (t)	RuPh, C ¹ $CH = CH CM_{0}$	15.5	$ ^{2}J(PC) $
	144.8 (t)	CH=CHCMe ₃ CH=CH <i>C</i> Me ₃	16.1	$ ^{2}J(PC) $
	36.5 (t)	CMe_3	1.4	$ ^{4}J(\text{PC}) $
	30.6 (t)	CMe_3	1.4	$ ^{3}J(PC) $
2bbb ^d	16.4 (t) 199.6 (t)	PMe_3	32.2 12.3	$ ^{2}J(PC) + ^{2}J(PC) $
	194.1 (t)	CO	8.0	$ ^{2}J(PC) $
	161.0 (t)	C_6H_4Cl, C^1	13.5	$ ^{2}J(\text{PC}) $
	148.8 (t) 145.0 (t)	$CH=CHCMe_3$	5.4 15.6	$ ^{\circ}J(PC) $
	36.2 (t)	CMe ₃	1.8	$ {}^{4}J(\text{PC}) $
	30.2 (t)	CMe_3	1.8	$ ^{5}J(PC) $
2aha	14.7 (t) 201 7 (t)	PMe ₃	32.7	$ ^{1}J(PC) + ^{3}J(PC) $
20Da	199.8 (t)	co	9.4	$ ^{2}J(PC) $
	156.8 (t)	RuPh, C ¹	13.9	$ ^{2}J(\text{PC}) $
	151.5 (t) 145 7 (t)	$CH=CHCMe_3$	4.5 15.8	$ ^{3}J(PC) $
	37.1 (s)	CMe ₃		5(I C)
	29.6 (s)	CMe_3	—	<u> </u>
3bba ^c	139.6 (dd)	Me ₃ CCH=CH <i>C</i> OPh	3.4	$ ^{2}J(PC) $
	76.8 (d)	Me ₂ CCH= <i>C</i> HCOPh	2.3	$ ^{2}J(PC) $
	66.5 (dd)	Me ₃ C <i>C</i> H=CHCOPh	34.0	$ ^{2}J(\text{PC}) $
	99 C (J)		1.5	$ ^{2}J(PC) $
	33.2 (d)	CMe_3	2.2	$ ^{4}J(PC) $
	20.8 (dd)	PMe ₃	25.4	$ ^{1}J(PC) $
	17 7 (1)		2.8	$ ^{3}J(PC) $
	17.7 (t)	PMe ₃	22.1	$ ^{3}J(PC) $
3cba	207.1 (dd)	CO	17.1	$ ^{2}J(PC) $
	107 1 (17)		15.3	$ ^{2}J(\text{PC}) $
	137.4 (dd)	Me ₃ CCH=CH <i>C</i> OPh	4.4	$ ^{2}J(PC) $
	78.0 (s)	Me₄CCH= <i>C</i> HCOPh	1.0	<u> Ju C) </u>
	69.6 (d)	Me ₃ C <i>C</i> H=CHCOPh	40.3	$ ^{2}J(\text{PC}) $
	53.3 (d)	$P(OMe)_2Ph$	3.3	$ ^{2}J(PC) $
	52.5 (d) 52.2 (d)	$P(ONe)_2Pn$ $P(ONe)_2Ph$	0.U 7.6	$ ^{-J(PC)} $ $ ^{2}J(PC) $
	0 N.N (U)	1 (01110/21 11	1.0	

Table 3 (continued)

Complex	δ	Assignment	Coupling constant/Hz	Assignment
	51.7 (d)	P(OMe),Ph	7.6	$ ^{2}J(PC) $
	33.4 (dd)	CMe ₃	2.2	$ ^{3}J(PC) $
		-	1.1	$ ^{3}J(PC) $
	32.8 (dd)	CMe_3	4.4	$ ^4 J(PC) $
			1.1	⁴ <i>I</i> (PC)

^{*a*} In C_6D_6 solution unless indicated otherwise. Resonances due to phenyl-ring carbons other than C^1 in aryl ligands omitted. ^{*b*} In CDCl₃ solution. ^{*c*} Carbonyl ligand resonance(s) not identified with certainty. ^{*d*} In $C_6D_5CD_3$ solution.

3.1 Hz],* and a distortionless enhancement of polarisation transfer (DEPT) ¹³C NMR spectrum provided an unambiguous distinction between the resonances for the α - and β -carbon atoms. Once again the coupling to the ³¹P nuclei was stronger for the α - than for the β -carbon. Use of [²H₁]**5a** showed that *cis* and *trans* addition of RuD occurred to approximately equal extents. The ratio of isomers of [²H₁]**6ac** did not change on standing: either equilibration of the isomers is rapid or they do not interconvert at all.

A similar reaction was performed between complex **5a** and propyne. The major product, **6ad**, separated from two byproducts by column chromatography, was shown by the coupling constant of 17.1 Hz between the α - and β -vinyl protons to be formed by *cis* addition of RuH to the alkyne. The resonances for the vinyl protons were complicated by coupling both to the phosphorus nuclei and to the protons in the methyl group on the β -carbon. One by-product was **6ac**, resulting from the presence of a little ethyne as impurity in the propyne: the other was tentatively identified, on the basis of an 11.2 Hz coupling between the two vinyl protons, as the isomer of **6ad** formed by *trans* addition of RuH to the propyne.

The reaction between complex 5a and EtOC=CH was substantially faster than any of those described above, possibly indicating a change in mechanism. The major product, 6ae, was notable for the value of 6.4 Hz for the coupling constant between the two vinyl protons, significantly different in size from all the proton-proton coupling constants (see above) for the vinyl and alkyl-substituted vinyl ligands, but Schaeffer¹¹ has shown that the presence of an electronegative group on an alkenic carbon atom decreases the values: for MeOCH=CH₂, for example, they are $trans-|{}^{3}J(HH)| = 14.4$, $cis-|{}^{3}J(HH)| = 6.4$ and $gem |^2 J(HH)| = 1.8$ Hz, as opposed to values of 16.8, 10.0 and 2.1 Hz, respectively, for propene.¹² Thus it appears that the two protons in **6ae** are mutually *cis*, indicating that it is formed by trans addition of RuH to the alkyne. Two minor products proved to be the results of reactions of **6ae** and an isomer of 6ae with a second molecule of EtOC≡CH.¹³

Chamberlain and Mawby¹ have described the preparation of the complexes 1aaa and 1aba by brief treatment of 6aa and 6ab, respectively, with LiPh in Et₂O at 273 K. The reactions had to be worked up and the produdcts stored at low temperature to avoid rearrangement to 2aaa and 3aaa and to 2aba and 3aba respectively. The same technique was used to obtain 1abb, 1abc and **1abd** from **6ab** and LiC_6H_4X-4 (X = Cl, Me or OMe). Complex **1abb** was fully characterised spectroscopically: as in the cases of **1aaa** and **1aba** it was possible to use the sizes of the coupling constants $|^{2}J(PC)|$ for the carbonyl ligands and for C¹ in the aryl ligand and the α -carbon in the vinyl ligand (using DEPT spectra to distinguish between C^1 and \check{C}^{α}) to show that one carbonyl and the aryl ligand were each trans to a PMe₂Ph ligand, while the other carbonyl and the vinyl ligand were *cis* to both. The value for $|{}^{3}J(HH)|$, the coupling constant between the vinyl protons, was much the same for **1abb** as for its precursor 6ab, showing that the stereochemistry of the vinyl ligand was

* Typical values for these coupling constants for vinyl ligands are listed in ref. 9.

unaffected by the reaction with LiPh. An unusual feature, recorded without comment by Chamberlain and Mawby for **1aaa** and **1aba**, was the unusually large value (18.3 Hz for **1abb**) for the splitting of the α -hydrogen resonance in the vinyl ligand by one phosphorus nucleus: in contrast, the splitting by the other phosphorus nucleus (5.2 Hz for 1abb) was considerably closer to the value for **6ab**. Crystal structures of the vinyl complexes $[Ru(CO)_2{C(CO_2Me)=C(CO_2Me)Cl}Cl(PMe_2Ph)_2]$,¹⁴ [Ru(CO)(CNCMe₃)(CH=CHPh){C(O)Ph}(PMe₂Ph)₂]¹⁵ and $[Ru(CO)_2{C(CO_2Me)=C(CO_2Me)H}Ph(PMe_2Ph)_2]^2$ show that in each case the vinyl ligand is approximately at right angles to the Ru-P bonds to the mutually transpair of PMe₂Ph ligands, placing the substituent on the α -carbon of the vinyl ligand well away from both phosphorus nuclei. In the complexes of structure 1 (see Scheme 2), where the phosphorus ligands are mutually cis, the large difference between the two values for $|^2 J(PH)|$ suggests that the vinyl C=C bond is coplanar with one Ru-P bond and at right angles to the other, so that the α -hydrogen is much closer to one ³¹P nucleus than to the other.

The preparations of complexes 1aca, 1ada, 1bba and 1cba from LiPh and 6ac, 6ad, 6bb and 6cb were carried out similarly, as were those of 1bbb and 1bbd from 6bb and LiC₆H₄Cl-4 and LiC₆H₄OMe-4 respectively. On the basis of spectroscopic evidence, all the products were assigned the ligand arrangement shown in 1, and in each case the stereochemistry of the vinyl ligand was not altered in the reaction. The same applied to the conversion of 6ae into 1aea: unlike the other complexes 6, 6ae was formed (see above) by trans addition of RuH to the alkyne, and the 6.9 Hz coupling constant between the two vinyl protons in **1aea** showed that the stereochemistry of the vinyl ligand remained unchanged. One vinyl proton resonance for laea was largely obscured by phenyl proton resonances, but was located at δ 7.02 by one-dimensional correlation spectroscopy (COSY) and by homonuclear decoupling. In all complexes of structure **1**, unlike those of **6** and **2** (where L = L'), the Ru–C bond to the vinyl ligand does not lie in a plane of symmetry, and in consequence two separate resonances were observed for the methylene protons in the OEt group.

In the case of the reaction between complex **6db** and LiPh the expected product **1dba** appeared to be short-lived even at 273 K: NMR spectra recorded as soon as possible after isolating the product inevitably showed that complexes **2dba** and **3dba** (see Scheme 1) were also present, making it impossible to prove that **2dba** and **3dba** were formed exclusively by way of **1dba**. Two isomers (see Scheme 2, where $L = PMe_3$ and $L' = PPh_3$ or *vice versa*) of **1dba** could be formed in the reaction: only one was observed, but, given the short lifetime of the complex, we were unable to determine which of the two it was.

When complex **6eb** was treated with LiPh at 273 K the expected product **1eba** was not observed at all. The actual product was **2eba**, the isomer of **1eba** with mutually *trans* PPh₃ ligands [see section (*iii*)].

(*ii*) Rearrangement of complexes [Ru(CO)₂(CH=CHR)-(C₆H₄X-4)L(L')], isomer 1

Chamberlain and Mawby¹ showed that complexes **1aaa** and **1aba** rearrange in C_6D_6 solution at room temperature to give

Table 4 Relative proportions of complexes of structures 2 and 3 formed by rearrangement of complexes $[Ru(CO)_2(CH=CHR)(C_6H_4X-4)L(L')]$ 1 at 293 K in C_6D_6

Complex 1aaa 1aba 1abb 1abc 1abd 1aca 1aea 1bba	L PMe ₂ Ph PMe ₃	L' PMe ₂ Ph PMe ₃	R Ph CMe ₃ CMe ₃ CMe ₃ H OEt ^a CMe ₃	X H Cl Me OMe H H H	% 2 60 40 20 70 70 50 100 80	% 3 40 60 80 30 30 50 0 20
1abl	DM _a Dh	DM _a Dh	CM ₃	OM	70	30
	Pivie ₂ Pfi	Pivie ₂ Pfi	Civie ₃	Ulvie	70	30
1aca	PMe ₂ Ph	PMe₂Ph	Н	Н	50	50
1aea	PMe ₂ Ph	PMe ₂ Ph	OEt ^a	Н	100	0
1bba	PMe ₃	PMe ₃	CMe ₃	Н	80	20
1bbb	PMe ₃	PMe ₃	CMe ₃	Cl	80	20
1bbd	PMe ₃	PMe ₃	CMe ₃	OMe	80	20
1cba	P(OMe) ₂ Ph	P(OMe) ₂ Ph	CMe ₃	Н	0	100
1dba	PMe ₃	PPh_3	CMe ₃	Н	20	80
1eba ^b	PPh_3	PPh_3	CMe ₃	Н	100	0

^a R is *cis*, not *trans*, to Ru. ^b Reaction between complex **6eb** and LiPh at 273 K gave **2eba** as the only detectable product, so there is no proof that **1eba** is an intermediate in the reaction.

pairs of products **2aaa** and **3aaa** and **2aba** and **3aba** respectively. As illustrated in Scheme 1, isomerisation from 1 to **2** simply involves exchange of the positions of a carbonyl ligand and one of the phosphorus ligands. Formation of **3**, however, results from the intramolecular combination of vinyl, phenyl and carbonyl ligands. All four products were characterised spectroscopically and by elemental analysis, and the structure of **3aaa** has been confirmed by X-ray crystallography.²

In many instances the new complexes of structure 1 rearranged under these conditions to give similar mixtures of products, although for those containing PMe₃ ligands rearrangement was substantially slower than for their analogues containing PMe₂Ph ligands. The proportions of 2 and 3 in the product mixtures, as measured by integration of ¹H or ³¹P NMR spectra, are shown in Table 4. Typical was 1bba, which was completely converted within 24 h into a 4:1 mixture of **2bba** and **3bba**. The equivalence of the PMe₃ ligands in **2bba** and their inequivalence in 3bba was clearly demonstrated by the ³¹P NMR spectra and by the methyl-proton and carbon resonances in the ¹H and ¹³C spectra. The presence of the vinyl ligand in **2bba** was revealed by doublet of triplets resonances for the α and β -protons: the triplet splittings by the ³¹P nuclei were 4.8 and 2.2 Hz, respectively, and the size of the doublet splittings $[^{3}J(HH) = 17.6 \text{ Hz}]$ showed that the vinyl protons were still mutually *trans*, as in **1bba**. The ¹³C NMR spectrum confirmed the presence of two inequivalent carbonyl ligands in 2bba, and a DEPT spectrum provided identification of the sharp triplet resonance for C¹ in the phenyl ligand. In contrast, the resonance for C² and C⁶ was broad and the splittings unresolved. A similar effect has been observed⁷ for [Ru(CO)₂Ph(Cl)(P-Me₂Ph)₂, which possesses structure **2** with the chloride ligand in the place of the vinyl group, and has been shown to be due to restriction of rotation of the phenyl ligand about the metalphenyl bond.

The vinyl-proton resonances for complex **3bba** were identified by the close similarities in chemical shifts and splitting patterns to the pair for **3aaa** (inadvertently switched in Table 2 in ref. 1). In contrast to **2bba**, the value of the coupling constant between the two vinyl protons was only 7.9 Hz, but this matches the value of 8.2 Hz for **3aaa**, where the vinyl protons are still mutually *trans.*² One notable feature of the ¹³C NMR spectrum (again common to **3aaa** and **3aba**) was the large splitting (34.0 Hz) of the resonance for the β -carbon of the vinyl group by *one* of the two ³¹P nuclei.

Two complexes of structure **1** rearranged to a single product under these reaction conditions. Complex **1aea**, $[Ru(CO)_2-(CH=CHOEt)Ph(PMe_2Ph)_2]$, was unique in possessing a substituent *cis* to the metal on the β -carbon atom of the vinyl ligand, and also in giving 100% conversion to the corresponding complex of structure **2**, **2aea**. The size of the coupling constant between the two vinyl protons, 6.9 Hz, confirmed that the rearrangement had occurred without alteration in the geometry of the vinyl ligand. Complex **1cba** yielded only the vinyl ketone complex **3cba**.

As mentioned in (*i*), the reaction between complex **6eb**, [Ru(CO)₂(CH=CHCMe₃)Cl(PPh₃)₂], and LiPh at 273 K failed to yield the expected product **1eba** with mutually *cis* phosphorus ligands. The NMR spectra of the product unambiguously identified it as **2eba**, the isomer of [Ru(CO)₂(CH=CHCMe₃)-Ph(PPh₃)₂] with mutually *trans* phosphorus ligands. It is possible that **2eba** results from rapid rearrangement of **1eba**, but just as likely that the bulk of the PPh₃ ligands enforces direct formation of **2eba** from **6eb** and LiPh.

The relative amounts of complexes **2** and **3** formed when a complex of type **1** rearranges are governed by kinetic, not thermodynamic, factors. Product ratios did not alter with time, and in cases where the products **2** and **3** were separated and redissolved no interconversion was observed at room temperature. Only at 353 K was very slow conversion of **2aba** into **3aba** detected in benzene solution, and at this temperature **3aba** was itself decomposing at a not much slower rate to free Me₃CCH=CHC(O)Ph and unidentified ruthenium complexes.

The results listed in Table 4 demonstrate that product ratios **2**:**3** depend heavily on the nature of the substituents R and X in the vinyl and aryl ligands. In complexes containing PMe₂Ph ligands, electron-releasing substituents on the vinyl ligand appear to favour formation of ketone complexes **3** (see the data for **1aaa**, **1aba** and **1aca**). Inclusion of **1aea** in this list is inadvisable since it is unique [see section (*i*)] in having a substituent on the β -carbon of the vinyl ligand which is *cis* rather than *trans* to the metal. In contrast, electron-releasing substituents on the aryl ligand evidently disfavour ketone formation in complexes containing PMe₂Ph ligands (see **1aba**, **1abb**, **1abc** and **1abd**). For complexes containing PMe₃ ligands, however, the ratio seems to be insensitive to substituents on the aryl ligand.

The ratio of products **2** and **3** from a given complex **1** is also temperature-sensitive. The rearrangement of **1aba** was studied in C_6H_5Me solution at 253, 293 and 328 K. Use of a protiated solvent ruled out measurement of product ratios by integration of ¹H NMR signals, so integration of resonances in the ³¹P NMR spectra was used instead. The accuracy of this procedure was checked by comparing values for the product ratio from rearangement of **1aba** in C_6D_6 at 293 K, obtained from both ¹H and ³¹P NMR spectra: the results were within 5% of each other. For rearrangement in C_6H_5Me the ratio of **2aba** to **3aba** was 1:3.5 at 253, 1.5:1 at 293 and 2.3:1 at 328 K, indicating a shift away from ketone complex formation with increasing temperature.

Comparison of the ratios for complexes **1aba**, **1bba**, **1cba** and **1dba** shows a shift towards the ketone complexes **3** as some of the methyl groups in the strongly σ -donating PMe₃ ligands are replaced by phenyl and methoxy substituents (which weaken the σ -donor power of a phosphorus ligand but enchance its π -acceptor capacity).

Choice of solvent was also important in determining product ratios. At 293 K complex **1aba** yielded a 40:60 ratio of **2aba** and **3aba** in benzene and toluene, a 50:50 ratio in ethanol and exclusively **2aba** in propanone. Although accurate measurement of reaction rates was not attempted, it was evident that the rate of formation of **2aba** was relatively insensitive to the choice of solvent, so that the decrease in the proportion of **3aba** with increasingly polar solvents was primarily due to the decrease in the rate of conversion of **1aba** into **3aba**. In view of the dramatic effect on product ratio of a change in solvent to propanone, the rearrangement of **1cba** (which gave 100% of **3cba** in benzene) was studied in propanone. In this instance, however, the ketone complex **3cba** was still the sole product, but the rate of rearrangement was markedly lower than in benzene.

(iii) Mechanisms for conversion of complexes 1 into 2 and 3

Chamberlain and Mawby¹ suggested that mechanisms for the rearrangement of complexes 1 might involve an initial migration of one of the two organic ligands on to CO, yielding intermediates [Ru(CO)(COCH=CHR)(C₆H₄X-4)L(L')] or [Ru- $(CO)(COC_6H_4X-4)(CH=CHR)L(L')]$. We have subsequently shown¹⁵ that each of these migration processes does occur and that the intermediates may be trapped by Me₃CNC as stable species $[Ru(CO)(CNCMe_3){C(O)CH=CHR}(C_6H_4X-4)L(L')]$ and $[Ru(CO)(CNCMe_3){C(O)C_6H_4X-4}(CH=CHR)L(L')].$ From the structures of these species (each resulting from attack by Me₃CNC trans to the newly formed acyl ligand) it is possible to deduce the ligand arrangements in the intermediates. These are shown in Scheme 3 as η^{T} -acyl species (labelled **A** and **B**), but they may well be stabilised by a secondary interaction of the acyl oxygen with the metal [there are several examples $^{\rm 10,16,17}$ in the literature of stable η^2 -acyl ruthenium(II) complexes].

Scheme 3 illustrates plausible routes, **a** from the vinyl migration intermediate **A**, and **b** from the phenyl migration intermediate **B**, to products **2** and **3**. In each case **3** is formed by attack on the acyl ligand by the other organic ligand and **2** by a ligand redistribution followed by breakdown of the acyl ligand. It is, however, worth noting that the rearrangement of **B** can be achieved by a single Berry pseudo-rotation,¹⁸ commonly a low-energy pathway, whereas the corresponding rearrangement of **A** cannot, so it is possible that initial vinyl migration may lead only to **3** whereas initial phenyl migration may lead to both **2** and **3**.

There *are* apparent links between the proportions of phenyl and vinyl migration in the reactions of complexes **1** with Me_3CNC^{15} and the ratio of products **2** and **3** formed by rearrangement of **1**. As mentioned in (*ii*), in complexes **1aaa**, **1aba** and **1aca** increasingly electron-releasing substituents in the vinyl ligand tip the balance in the rearrangement reactions in favour of the ketone complexes **3**: similarly such substituents favour vinyl migration in the reactions with Me_3CNC . Conversely, the behaviour of **1aba**, **1abb**, **1abc** and **1abd** demonstrates that electron-releasing substituents in the aryl ligand

favour rearrangement to **2**, and such substituents also increase the proportion of phenyl migration in reactions with Me₃CNC. There are, however, clear exceptions to this simple relationship: thus **1bba** gives a high proportion of the vinyl-migration product [Ru(CO)(CNCMe₃){C(O)CH=CHCMe₃}Ph(PMe₃)₂] but rearranges to give 80% of **2bba** and only 20% of **3bba**. Even more striking is the behaviour of **1cba**, which gives only the phenyl-migration product [Ru(CO)(CNCMe₃){C(O)Ph}(CH= CHCMe₃){P(OMe)₂Ph}₂] but rearranges exclusively to the ketone complex **3cba**.

Consideration of reaction kinetics identifies one reason why it is dangerous to expect a simple correlation in all cases between the two types of reaction. Kinetic studies of the reaction of complexes 1 with Me₃CNC showed that formation of the intermediates A and B was rate determining: subsequent reaction with Me₃CNC was much faster than both the formation of the intermediates and their reversion to 1.15 The rearrangements to 2 and 3 are appreciably slower than the reactions with Me₃CNC (by a factor of around 4, for example, for 1aaa, and even more markedly for complexes containing PMe₃ ligands), and yet the concentrations of **A** and **B** are too low for these species to be detectable: hence 1 must be in equilibrium with A and B, and the equilibria must lie heavily in favour of **1**. It follows that the relative importance of routes **a** and **b** depends not only on the rates of formation of **A** and **B** from 1 but also on comparison of their rates of reconversion into 1 with the rates of rearrangement to 2 and/or 3.

If, as implied by Scheme 3, there are pathways from intermediate **B** (and perhaps also **A**) to both complexes **2** and **3**, some of the factors affecting product distribution may simply change the balance between those pathways. Thus the effect of temperature probably reflects an unfavourable entropy of activation in the process of bond formation between the acyl ligand and the other organic ligand *en route* to **3**. The bonding between the acyl ligand and metal in the intermediates may also be important. Six-co-ordinate complexes do not normally undergo facile intramolecular rearrangement, so if the acyl ligand in the intermediates is η^2 -bonded it must presumably revert to η^1 bonding prior to rearrangement. In contrast there would

Scheme 3 Possible mechanisms for rearrangement of complexes 1. For simplicity, vinyl and phenyl ligands are shown without substituents. The ligand L'' is Me₃CNC

appear to be no reason why complexes 3 should not be formed directly from η^2 -acyl intermediates: indeed the removal of electron density from the acyl oxygen by bonding to the metal may well encourage nucleophilic attack on the acyl carbon by the other organic ligand. This may explain why increase in the π acceptor and decrease in the σ -donor character of the phosphorus ligands favours formation of 3, since any decrease in the electron supply to the metal from the phosphorus ligands should strengthen the interaction between the acyl oxygen and the metal. It may also explain why the use of propanone as solvent so markedly reduces the rate of formation of 3: attachment of propanone to the metal in the intermediates may prevent η^2 bonding of the acyl ligand and hence inhibit conversion into **3**. Provided that the propanone is only weakly held, it may still dissociate to allow the rearrangement necessary to form 2.

Experimental

The NMR spectra detailed in Tables 1–3 were recorded on a Bruker MSL 300 spectrometer (operating frequencies 300.15, 121.49 and 75.47 MHz for ¹H, ³¹P and ¹³C respectively). A Perkin-Elmer PE580B spectrometer was used to obtain IR spectra.

The preparations of each group of ruthenium complexes are described below. Preparative work was routinely carried out under an atmosphere of nitrogen or argon. Selected members of each group of complexes **4–6** have been subjected to elemental analysis (this was not possible for complexes **1** which were only stable at low temperatures).

Preparations

Complexes 4. The preparation of complex 4a was based on the method described by Jenkins et al.⁴ Carbon monoxide was passed through a refluxing solution of RuCl₃·3H₂O (Aldrich, 2.8 g) in 2-methoxyethanol (50 cm³). After *ca*. 5 h the originally black solution had turned yellow, and PMe₂Ph (2.8 cm³) was added. The flow of CO was reduced and heating continued for 12 h. The solvent was then removed under reduced pressure and the residue was treated with propanone. The dimeric byproduct, [Ru₂(CO)₄Cl₄(PMe₂Ph)₂], which is insoluble in propanone, was filtered off. Ethanol was added to the filtrate, and **4a** was obtained as white crystals on concentration of the solution under a stream of nitrogen (yield 70%). The same procedure, using PMe₃ in place of PMe₂Ph, gave 4b in similar yield, with [Ru₂(CO)₄Cl₄(PMe₃)₂] as a by-product. Complex 4c was prepared by heating [{Ru(CO)₂Cl₂}_n] (Johnson Matthey, 0.30 g) with P(OMe)₂Ph (0.42 cm³) under reflux in methanol (20 cm³). The solvent was removed under reduced pressure and the product crystallised from an ethanol-propanone mixture (white crystals, yield 60%). Complex 4d was obtained by stirring [Ru₂(CO)₄Cl₄(PMe₃)₂] (see above, 0.15 g) in propanone (20 cm³) with PPh₃ (0.13 g). After 1 h the solvent was slowly removed under reduced pressure, leaving white crystals of 4d in essentially quantitative yield (Found for 4a: C, 43.05; H, 4.25. Calc. for C₁₈H₂₂Cl₂O₂P₂Ru: C, 42.9; H, 4.40. Found for 4c: C, 38.25; H, 4.00. Calc. for C₁₈H₂₂Cl₂O₆P₂Ru: C, 38.05; H, 3.90. Found for 4d: C, 48.9; H, 4.40. Calc. for C₂₃H₂₄Cl₂O₂P₂Ru: C, 48.75; H, 4.25%).

Complexes 5. The synthesis of complex **5a** was a modified version of that used by Bray and Mawby.⁹ To a stirred suspension of powdered **4a** (0.50 g) in ethanol (4 cm³) was added NaBH₄ (0.15 g). Usually effervescence and development of an orange colour began almost immediately: occasionally gentle warming was required to initiate the reaction. After 5 min the ethanol was removed under reduced pressure. The product was extracted into benzene (4 × 5 cm³) and the combined extracts filtered. Removal of the benzene under reduced pressure left an orange oil which was crystallised at 273 K from a mixture of

d may by the low solubility of **4c** and **4d** made it advisable to replace ethanol as the solvent by ethanol-benzene (1:1): yields were 60 and 80% respectively. The preparation of **5e** was carried out as described by Geoffroy and Bradley⁸ (yield 90%). The deuteride complexes [²H₁]**5a** and [²H₁]**5b** were prepared in the same way as for **5a** and **5b**, but using NaBD₄ in EtOD (Found for **5a**: C, 46.1; H, 5.05. Calc. for C₁₈H₂₃ClO₂P₂Ru: C, 46.0; H, 4.95. Found for **5b**: C, 27.65; H, 5.50. Calc. for C₈H₁₉ClO₂P₂Ru: C, of **3**: 27.8; H, 5.55. Found for [²H₁]**5a**: C, 45.75; H + D, 5.05. Calc. for C₁₈H₂₂ClDO₂P₂Ru: C, 45.9; H + D, 5.15%). **Complexes 6.** Complex **6aa** was obtained by warming a solution of **5a** (0.10 g) in benzene (1 cm³) with PhC=CH (0.024)

ethanol and heptane (white crystals, 55%). Complex 5b was

obtained in similar yield by the same technique. For 5c and 5d

tion of 5a (0.10 g) in benzene (1 cm³) with PhC=CH (0.024 cm³) at 323 K for 20 min. The solution was cooled and treated with ethanol (2 cm³). Evaporation under a stream of nitrogen gave pale yellow crystals of 6aa (yield 90%). The procedure for converting 5a into 6ab was similar, but crystallisation proved more difficult. Removal of the solvent from the reaction mixture under reduced pressure left an oily residue: this was dissolved in the minimum volume of a mixture of heptane (80%) and ethanol (20%) and then cooled in an ice-salt bath. Slow evaporation under a stream of nitrogen gave crystals of **6ab** in 70% yield. A similar procedure was used for the preparation of 6bb, 6cb, 6db and 6eb (reaction times respectively 20, 40, 30 and 30 min): yields were again ca. 70%. To obtain 6ac, a solution of **5a** (0.10 g) in $C_6 D_6$ (0.5 cm³) was placed in an NMR tube fitted with a septum cap. Using syringe needles for gas entry and exit, ethyne was passed through the solution for 1 min, removing the exit needle slightly before the entry needle to leave a slight positive pressure of ethyne in the tube. The reaction was monitored by ¹H NMR spectroscopy, with further addition of ethyne as necessary, and was complete in 2 d (or 4 h at 313 K). Removal of the solvent under reduced pressure was followed by crystallisation from a cold mixture of heptane and ethanol (yield 50%). The reaction between 5a and propyne to give 6ad was carried out in the same way but the higher solubility of propyne made further additions of the gas unnecessary. After 2 d at room temperature the solvent was removed under reduced pressure, and **6ad** was purified by column chromatography, using an alumina column packed in CHCl₃. The residue was added to the column in CHCl₃ solution, and initial elution with CHCl₃ to remove by-products was followed by elution with CHCl₃ containing a little methanol. Complex 6ad was obtained as a colourless oil on removal of the solvents. Complex 6ae was obtained by treating 5a (0.10 g) in C_6D_6 (0.5 cm³) with 0.05 cm³ of a 50% w/v solution of EtOC=CH in hexane. After 4 h the solution was filtered to remove a black solid (believed to be polymerised EtOC=CH) and the solvent was removed under reduced pressure. A work-up similar to that for **6ad** was used to separate 6ae from by-products (Found for 6aa: C, 54.65; H, 5.10. Calc. for C₂₆H₂₉ClO₂P₂Ru: C, 54.6; H, 5.10. Found for 6ab: C, 52.1; H, 6.10. Calc. for C₂₄H₃₃ClO₂P₂Ru: C, 52.2; H, 6.05. Found for **6ac**: C, 48.2; H, 5.40. Calc. for C₂₀H₂₅ClO₂-P₂Ru: C, 48.45; H, 5.10. Found for 6bb: C, 41.0; H, 6.70. Calc. for C16H25ClO2P2Ru: C, 39.3; H, 6.85. Found for 6db: C, 56.9; H, 5.80. Calc. for C₂₉H₃₅ClO₂P₂Ru: C, 56.7; H, 5.75%).

Complexes 1. All operations were caried out at 273 K. The preparation of complex **1aba** was typical of the method used. A stirred solution of **6ab** (0.05 g) in Et₂O (20 cm³) was treated with a freshly prepared solution of LiPh¹⁹ (1 cm³ of a *ca.* 0.2 mol dm⁻³ solution). The reaction mixture immediately turned yellow. After 1 min a small portion of the mixture was removed by Pasteur pipette, added to water (0.5 cm³), and the mixture shaken until the ether layer was clear. An IR spectrum of the ether layer was recorded to ensure that no **6ab** remained and therefore that no further addition of LiPh was necessary. Icecold water (2 cm³) was added to the rest of the reaction mixture

with continued stirring: the initial cloudiness of the ether layer quickly cleared. Stirring was stopped, and as much water as possible removed by pipette. The ether layer was stirred vigorously with anhydrous MgSO4 for 5 min and then filtered by suction into an ice-cooled flask. The solvent was removed under vacuum leaving 1aba as a yellow-brown oil, normally used immediately for studies of its rearangement to 2aba and 3aba. The same method was used to obtain all other complexes 1, using the appropriate 6 and organolithium reagent.^{19,20} Based on subsequent combined yields of complexes 2 and 3, yields of 1 were in the region 60-80%. The ease of rearrangement of these complexes made their isolation in a completely pure state impossible: the only organoruthenium species present in a concentration detectable by NMR spectroscopy, however, were the diaryl complexes $[Ru(CO)_2(C_6H_4X-4)_2L(L')]$, inevitably found as minor by-products of the reaction of complexes 6 with the appropriate lithium aryls. These complexes were completely stable under the conditions used for rearrangement of the complexes 1 to 2 and 3.

Rearrangement of complexes 1

A solution of the appropriate complex **1** in the required NMR solvent (0.5 cm³) was made up at 273 K and placed in an icecooled NMR tube. Rearrangement to **2** and **3** was then monitored by NMR spectroscopy at the appropriate temperature. Where deuteriated solvents were used the product ratios were measured by integration of ¹H resonances. For reactions in non-deuteriated solvents the ³¹P NMR spectra were used for this purpose, with a long delay (20 s) between scans to minimise the effect of differences in relaxation times between ³¹P nuclei. Pairs of complexes **2** and **3** were not normally separated: details of the separation and characterisation (including elemental analysis) of **2aaa**, **3aaa**, **2aba** and **3aba** have been given previously.¹

Conversion of complex 2aba into 3aba

Complex **2aba** (0.01 g) in C_6D_6 (0.5 cm³) was sealed under vacuum in an NMR tube and heated at 353 K. Changes in ¹H and ³¹P NMR spectra were monitored over a period of 2 weeks. After 1 week the conversion into **3aba** was about 50% complete,

but slow breakdown of this complex meant that after 2 weeks little of either **2aba** or **3aba** remained.

Acknowledgements

We thank the EPSRC for a maintenance grant (to M. P. W.).

References

- 1 B. Chamberlain and R. J. Mawby, J. Chem. Soc., Dalton Trans., 1991, 2067.
- 2 P.-W. Lei and C. D. Reynolds, personal communication.
- 3 E. J. S. Vichi, P. R. Raithby and M. McPartlin, J. Organomet. Chem., 1983, 256, 111.
- 4 J. M. Jenkins, M. S. Lupin and B. L. Shaw, J. Chem. Soc. A, 1966, 1787.
- 5 C. F. J. Barnard, J. A. Daniels, J. Jeffery and R. J. Mawby, *J. Chem. Soc.*, *Dalton Trans.*, 1976, 953.
- 6 J. M. Bray and R. J. Mawby, J. Chem. Soc., Dalton Trans., 1987, 2989.
- 7 E. J. Probitts, D. R. Saunders, M. H. Stone and R. J. Mawby, J. Chem. Soc., Dalton Trans., 1986, 1167.
- 8 G. L. Geoffroy and M. G. Bradley, Inorg. Chem., 1977, 16, 744.
- 9 J. M. Bray and R. J. Mawby, *J. Chem. Soc.*, *Dalton Trans.*, 1989, 589. 10 H. Loumrhari, J. Ros, M. R. Torres, A. Santos and A. M. Echavar-
- ren, J. Organomet. Chem., 1991, **411**, 255. 11 T. Schaeffer, Can. J. Chem., 1962, **40**, 1.
- 12 C. N. Banwell, N. Sheppard and J. J. Turner, *Spectrochim. Acta*, 1960, **16**, 794; A. A. Bothner-By and C. Naar-Colin, *J. Am. Chem. Soc.*, 1961, **83**, 231.
- 13 M. P. Waugh, P. D. Morran, R. J. Mawby, F. C. F. Körber, A. J. Reid and C. D. Reynolds, J. Chem. Soc., Chem. Commun., 1995, 941.
- 14 P. R. Holland, B. Howard and R. J. Mawby, J. Chem. Soc., Dalton Trans., 1983, 231.
- 15 M. P. Waugh, R. J. Mawby, A. J. Reid, R. J. Carter and C. D. Reynolds, *Inorg. Chim. Acta*, 1995, **240**, 263.
- 16 W. R. Roper and L. J. Wright, J. Organomet. Chem., 1977, 142, C1.
- 17 W. R. Roper, G. E. Taylor, J. M. Waters and L. J. Wright, *J. Organomet. Chem.*, 1979, **182**, C46.
- 18 R. S. Berry, J. Chem. Phys., 1960, 32, 933.
- 19 H. Gilman, E. A. Zoellner and W. M. Selby, J. Am. Chem. Soc., 1932, 54, 1957.
- 20 H. Gilman, W. Langham and F. W. Moore, J. Am. Chem. Soc., 1940, 62, 2327.

Received 24th June 1996; Paper 6/04403D